Chilebio Noticias

La edición genética elimina a los mosquitos transmisores de malaria

Los investigadores lograron eliminar a la población de mosquitos dentro de 11 generaciones y sugieren que la técnica podría usarse para eliminar y controlar la propagación de la malaria. Esta mutación artificial que causa infertilidad en las hembras fue desarrollada con la técnica de edición genética CRISPR-Cas9.

Científicos del Imperial College de Londres (Reino Unido) han erradicado una población cautiva de mosquitos transmisores de la malaria mediante la introducción de una mutación genética que vuelve a las hembras estériles. La técnica que han utilizado, denominada genética dirigida o impulso genético (gene drive), consiste en editar el ADN de unos pocos individuos y esperar a que la mutación se extienda en generaciones sucesivas. Su logro acerca los planes de liberar mosquitos modificados para erradicar poblaciones salvajes de insectos transmisores de enfermedades como la malaria, el dengue, la fiebre amarilla o el zika.

[Recomendado: CRISPR: La herramienta de edición genética que está revolucionando la medicina y agricultura]

Esta es la primera vez que un experimento logra anular la capacidad de reproducción de una población entera de animales en el laboratorio utilizando edición genética para modificar el gen que determina el desarrollo sexual de una especie. En experimentos anteriores de otros investigadores, los mosquitos desarrollaron mutaciones nuevas que les confirieron resistencia a la modificación genética inducida en pocas generaciones. “Lo increíble aquí es que también se produjeron mutaciones, pero esas nuevas variantes genéticas hacen que el gen [que determina el desarrollo sexual] deje de funcionar. No han podido desarrollar resistencia”, señala Andrea Cristiani, el autor principal del estudio que se publica hoy en Nature Biotechnology.

[Recomendado: Brasil desarrolla mosquitos transgénicos “estériles” para erradicar el dengue, fiebre amarilla y otras enfermedades]

Pedro Alonso, director del Programa Mundial sobre Malaria de la Organización Mundial de la Salud (OMS), señala que la genética dirigida “se ve como una de las vías más prometedoras para avanzar en la lucha contra la malaria y es, en realidad, la más prometedora para contemplar” su eventual  “erradicación”.

Cristiani y sus compañeros aplicaron la técnica de edición genética CRISPR para modificar un gen que determina el desarrollo sexual en mosquitos de la especie Anopheles gambiae. Introdujeron la mutación en el 12% de una población de 600 insectos. A lo largo de un año los científicos cuidaron de los mosquitos, alimentando a las larvas con comida de gato, a los machos adultos con agua azucarada y a las hembras —las únicas que pican— con sangre descartada del banco de donantes. La mutación se extendió paulatinamente, de modo que en un espacio de entre 7 y 11 generaciones no quedaba ningún animal, en lugar de los 20 millones que cabría esperar de una población sana.

Según Cristiani, “la gente pensaba que nunca podría funcionar”, porque parece contradictorio que una mutación que causa esterilidad pueda ser cada vez más abundante en generaciones sucesivas. La clave está en que la mutación es recesiva, es decir, solo afecta a las hembras que tienen dos copias del gen mutado, una del padre y otra de la madre. Estas se desarrollan con características anatómicas de ambos sexos y son incapaces de picar o poner huevos. Todos los machos y las hembras con una sola copia de la mutación pudieron reproducirse con normalidad y así afianzar la modificación genética inducida en la siguiente generación. Con el tiempo, no quedaron suficientes hembras fértiles para asegurar la continuidad de la población.

Los científicos eligieron mutar ese gen concreto porque es una región del ADN “muy conservada” en la evolución. Esto significa que requiere una estructura muy precisa para funcionar. Cualquier alteración de su código genético, por pequeña que sea, resulta en la muerte o infertilidad del animal, y por eso no persistió ninguna de las mutaciones aleatorias que podrían haber otorgado resistencia a la población.

[Recomendado: 10 formas en que la edición genética revolucionará la ciencia ambiental y la biorremediación]

“Un gen como este está presente en todas las especies de insectos”, explica Cristiani: “El descubrimiento abre la posibilidad de atacar otros transmisores de enfermedades como los mosquitos Aedes [portadores del dengue, la fiebre amarilla y el zika] o plagas de insectos”. Zachary Adelman, un entomólogo de la Universidad A&M de Texas (EE UU) ajeno a este estudio y que ha desarrollado experimentos de genética dirigida para cambiar de sexo a los mosquitos Aedes, considera que esta técnica es “muy interesante” porque los mosquitos “no son capaces de esquivarla evolutivamente”.

“A menudo, los investigadores intentan exagerar sus resultados. Estos científicos han hecho un trabajo muy bueno al ser cautos con sus interpretaciones”, añade Adelman. “Es un avance tecnológico increíble, pero todavía queda mucho por probar”, advierte. Los autores del estudio explican que será necesario experimentar de nuevo bajo condiciones de laboratorio que reflejen el ambiente tropical natural de los mosquitos.

El consenso es que las primeras pruebas de campo no llegarán antes de por lo menos cinco años. “Tengo confianza de que podremos obtener resultados convincentes en la próxima fase de semicautiverio. De ahí a las poblaciones salvajes entramos en territorio completamente desconocido, en el que las decisiones políticas probablemente serán más relevantes que nuestra capacidad técnica”, concluye Cristiani. Alonso alerta de que la implementación supondrá retos nuevos que “no serán menores”. “El riesgo es siempre lo desconocido”, dice: “[en la OMS] lo vemos no necesariamente con optimismo, pero sí con ilusión”.

LA MALARIA EN CIFRAS

La malaria es una enfermedad causada por parásitos del género Plasmodium que afecta sobre todo a países africanos. De las aproximadamente 3.500 especies de mosquito que existen, solo unas 40 transmiten los parásitos, por picaduras de las hembras. La Organización Mundial de la Salud (OMS) estima que en 2016 hubo 216 millones de casos en 91 países, un aumento de 5 millones con respecto al año anterior. Según los investigadores del estudio, ese fue el primer año en que aumentaron los casos en más de dos décadas.

La enfermedad produce fiebre, normalmente entre 10 y 15 días después de la picadura, por lo que su detección resulta difícil. La OMS advierte que si no se trata en el primer día, puede producir complicaciones y llevar a la muerte. En 2016, se estima que la inversión total en control y eliminación de la malaria fue de 27.000 millones de dólares. El 31% de este coste lo asumieron los gobiernos de países donde la enfermedad es endémica.

Aviso-extra: ¿Consecuencias para el ecosistema?

Un temor esgrimido por muchas personas ante noticias de mosquitos genéticamente modificados para erradicar poblaciones silvestres problemáticas, es que “podría causar efectos catastróficos en ecosistemas” al ser estos parte de una cadena trófica. Sin embargo, primero se debe considerar que mosquitos problématicos en agricultura se han controlado con técnicas de mosquitos estériles por radiación sin tener problemas a nivel ecológico. Y segundo, eliminar mosquitos, ya sea por problemas agrícolas o vectores de enfermedades humanas (como Aedes Aegypti y Anopheles gambiae) no presenta mayor riesgo ecológico, ya que existen alrededor de 3500 especies de mosquitos en total en el mundo. Su ausencia en su papel como alimento (de ciertos peces y anfibios) o como polinizadores, sería temporal antes de que otra especie ocupe su nicho. Para mayor información revisar la publicación de Nature: “Un mundo sin mosquitos“.

Compartir
Artículos relacionados
El primer arroz transgénico de China obtiene aprobación en Estados Unidos
Millones de agricultores en todo el mundo prefieren los cultivos transgénicos por las ventajas que ofrecen
La adopción de algodón transgénico en India mejoró la dieta y seguridad alimentaria de los pequeños agricultores

Comments are closed.